martes, 3 de febrero de 2015

TEOREMA DE TALES

TEOREMA DE TALES


Existen dos teoremas relacionados con la geometría clásica que reciben el nombre de teorema de Tales, ambos atribuidos al matemático griego Tales de Mileto en el siglo VI a. C.

Los dos teoremas de Tales

Primer teorema
El primero de ellos explica esencialmente una forma de construir un triángulo semejante a uno previamente existente ("los triángulos semejantes son los que tienen ángulos iguales y sus lados homólogos proporcionales"). Mientras que el segundo desentraña una propiedad esencial de los circuncentros de todos los triángulos rectángulos ("encontrándose éstos en el punto medio de su hipotenusa"), que a su vez en la construcción geométrica es ampliamente utilizado para imponer condiciones de construcción de ángulos rectos. Si tres o más rectas paralelas son intersecadas cada una por dos transversales, los segmentos de las transversales determinados por las paralelas, son proporcionales.

Teorema primero
Si en un triángulo se traza una línea paralela a cualquiera de sus lados, se obtiene un triángulo que es semejante al triángulo dado.

Como definición previa al enunciado del teorema, es necesario establecer que dos triángulos son semejantes si tienen los ángulos correspondientes iguales y sus lados son proporcionales entre sí. El primer teorema de Tales recoge uno de los resultados más básicos de la geometría, al saber, que:
Según parece, Tales descubrió el teorema mientras investigaba la condición de paralelismo entre dos rectas. De hecho, el primer teorema de Tales puede enunciarse como que la igualdad de los cocientes de los lados de dos triángulos no es condición suficiente de paralelismo. Sin embargo, la principal aplicación del teorema, y la razón de su fama, se deriva del establecimiento de la condición de semejanza de triángulos, a raíz de la cual se obtiene el siguiente corolario.

Corolario

Del establecimiento de la existencia de una relación de semejanza entre ambos triángulos se deduce la necesaria proporcionalidad entre sus lados. Ello significa que la razón entre la longitud de dos de ellos en un triángulo se mantiene constante en el otro.
Por ejemplo, en la figura se observan dos triángulos que, en virtud del teorema de Tales, son semejantes. Entonces, del mismo se deduce a modo de corolario que el cociente entre los lados A y B del triángulo pequeño es el mismo que el cociente entre los lados D y C en el triángulo grande. Esto es, que como por el teorema de Tales ambos triángulos son semejantes, se cumple que:
  \frac{A}{B} = \frac{D}{C} \,
Este corolario es la base de la geometría descriptiva. Su utilidad es evidente; según Heródoto, el propio Tales empleó el corolario de su teorema para medir la altura de la pirámide de Keops en Egipto. En cualquier caso, el teorema demuestra la semejanza entre dos triángulos, no la constancia del cociente.
Del primer teorema de Tales se deduce además lo siguiente (realmente es otra variante de dicho teorema, y, a su vez, consecuencia del mismo): Si las rectas A, B, C son paralelas y cortan a otras dos rectas R y S, entonces los segmentos que determinan en ellas son proporcionales.

Segundo teorema


Teorema segundo
Sea B un punto de la circunferencia de diámetro AC, distinto de A y de C. Entonces el triángulo ABC, es un triángulo rectángulo.

El segundo teorema de Tales de Mileto es un teorema de geometría particularmente enfocado a los triángulos rectángulos, lascircunferencias y los ángulos inscritos, consiste en el siguiente enunciado:
Este teorema (véase fig 2.1 y 2.2), es un caso particular de una propiedad de los puntos cocíclicos y de la aplicación de losángulos inscritos dentro de una circunferencia.

Demostración

En la circunferencia de centro O y radio r (véase fig 2.3), los segmentos
OA , OB y OC
son iguales por ser todos radios de la misma circunferencia.
Por lo tanto los triángulos AOB y BOC son isósceles.
La suma de los ángulos del triángulo ABC es:
2 \alpha + 2 \beta = \pi = 180^{\circ}
Dividiendo ambos miembros de la ecuación anterior por dos, se obtiene:
A \widehat BC = \alpha + \beta = \frac {\pi} 2 \; = 90^{\circ}
Con la expresión anterior el segundo teorema queda demostrado.

Corolarios

(Corolario 1) En todo triángulo rectángulo la longitud de la mediana correspondiente a la hipotenusa es siempre ½ de la hipotenusa.
Ya que aplicando el teorema anterior, se sabe que para cualquier posición que adopte el vértice B vale la igualdad,OA = OB = OC = r, donde OB es la mediana de la hipotenusa, (véase fig 2.3).
(Corolario 2) “La circunferencia circunscripta a todo triángulo rectángulo siempre tiene radio igual a ½ de la hipotenusa y su circuncentro se ubicará en el punto medio de la misma.
El corolario 2 también surge de aplicar el teorema anterior, para una comprensión intuitiva basta observar la fig 2.2.

Aplicación (Tales - teorema segundo)


Se supondrá que una tangente cualquiera 
t (por ahora desconocida) toca a la circunferencia k en un puntoT (también desconocido por ahora). Se sabe por simetría que cualquier radio r de la circunferencia k es perpendicular a la tangente del punto T que dicho radio define en la misma, por lo que concluimos que ángulo OTP es necesariamente recto.El “segundo teorema” (de Tales de Mileto) puede ser aplicado para trazar las tangentes a una circunferencia k dada, que además pasen por un punto P conocido y externo a la misma (véase figura).
Lo anterior implica que el triángulo OTP es rectángulo. Recordando el «corolario 2 del teorema segundo de Tales» podemos deducir que entonces el triángulo OTP es inscribible en una circunferencia de radio ½ de la hipotenusa OP del mismo.
Entonces marcando el punto H como punto medio de la hipotenusa OP y haciendo centro en el mismo, podemos dibujar una segunda circunferencia auxiliar (gris en la figura) que será la que circunscribe al triángulo OTP.
Esta última circunferencia trazada se intersecará con la circunferencia k en dos puntos T y T', estos son justamente los puntos de tangencia de las dos rectas que son simultáneamente tangentes a k y además pasan por el punto P, ahora ya conocidos los puntos T y T' solo basta trazar las rectas TP y T'P (rojas en la figura) para tener resuelto el problema.

TEOREMA DE PITÁGORAS

TEOREMA DE PITÁGORAS 

El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los catetos (los dos lados menores del triángulo, los que conforman el ángulo recto).

Historia 

El teorema de Pitágoras tiene este nombre porque su descubrimiento recae sobre la escuela pitagórica. Anteriormente, en Mesopotamia y el Antiguo Egipto se conocían ternas de valores que se correspondían con los lados de un triángulo rectángulo, y se utilizaban para resolver problemas referentes a los citados triángulos, tal como se indica en algunas tablillas y papiros. Sin embargo, no ha perdurado ningún documento que exponga teóricamente su relación. La pirámide de Kefrén, datada en el siglo XXVI a. C., fue la primera gran pirámide que se construyó basándose en el llamado triángulo sagrado egipcio, de proporciones 3-4-5.

Designaciones convencionales

Triángulos — Resumen de convenciones de designación
Vértices\text{A}\text{B}\text{C}
Lados (como segmento)\text{BC}\text{AC}\text{AB}
Lados (como longitud)abc
Ángulos \widehat{\alpha} = \widehat{a} = \widehat{A} = \widehat{BAC}  \widehat{\beta} = \widehat{b} = \widehat{B} = \widehat{ABC}  \widehat{\gamma} = \widehat{c} = \widehat{C} = \widehat{ACB}

Demostraciones

El teorema de Pitágoras es de los que cuenta con un mayor número de demostraciones diferentes, utilizando métodos muy diversos. Una de las causas de esto es que en la Edad Media se exigía una nueva demostración del teorema para alcanzar el grado de "Magíster matheseos".
Algunos autores proponen hasta más de mil demostraciones. Otros autores, como el matemático estadounidense E. S. Loomis, catalogó 367 pruebas diferentes en su libro de 1927 The Pythagorean Proposition.
En ese mismo libro, Loomis clasificaría las demostraciones en cuatro grandes grupos: las algebraicas, donde se relacionan los lados y segmentos del triángulo;geométricas, en las que se realizan comparaciones de áreas; dinámicas a través de las propiedades de fuerza, masa; y las cuaterniónicas, mediante el uso de vectores.

Demostración

Sea el triángulo rectángulo de catetos a y b e hipotenusa c. Se trata de demostrar que el área del cuadrado de lado c es igual a la suma de las áreas de los cuadrados de lado a y lado b. Es decir:
 a^2 + b^2 = c^2\,
Si añadimos tres triángulos iguales al original dentro del cuadrado de lado c formando la figura mostrada en la imagen, obtenemos un cuadrado de menor tamaño. Se puede observar que el cuadrado resultante tiene efectivamente un lado de b - a. Luego, el área de este cuadrado menor puede expresarse de la siguiente manera:
(a-b)^2 = a^2 - 2ab + b^2 \,
Ya que (b-a)^2 = (a-b)^2 \, .
Es evidente que el área del cuadrado de lado c es la suma del área de los cuatro triángulos de altura a y base b que están dentro de él más el área del cuadrado menor:
c^2 = 4 \cdot \left( \frac{a \cdot b}{2} \right) + a^2 - 2ab + b^2= a^2 + b^2
Con lo cual queda demostrado el teorema.

Demostraciones supuestas de Pitágoras


Se cree que Pitágoras se basó en la semejanza de los triángulos ABC, AHC y BHC. La figura coloreada hace evidente el cumplimiento del teorema.
Se estima que se demostró el teorema mediante semejanza de triángulos: sus lados homólogos son proporcionales.1
Sea el triángulo ABC, rectángulo en C. El segmento CH es la altura relativa a la hipotenusa, en la que determina los segmentos a’ y b’, proyecciones en ella de los catetos a y b, respectivamente.
Los triángulos rectángulos ABC, AHC y BHC tienen sus tres bases iguales: todos tienen dos bases en común, y los ángulos agudos son iguales bien por ser comunes, bien por tener sus lados perpendiculares. En consecuencia dichos triángulos son semejantes.
  • De la semejanza entre ABC y AHC:
y dos triángulos son semejantes si hay dos o más ángulos congruentes.
\frac {b}{b'}=\frac {c}{b}
b^2\ =\ b'c
  • De la semejanza entre ABC y BHC:
\frac {a}{a'}=\frac {c}{a}
a^2\ =\ a'c
Los resultados obtenidos son el teorema del cateto. Sumando:
a^2\ +\ b^2 =a'c\ +\ b'c\ =\ c\left (a'+b'\right )
Pero \left (a'+b'\right )=\ c, por lo que finalmente resulta:
a^2\ +\ b^2 =c^2

La relación entre las superficies de dos figuras semejantes es igual al cuadrado de su razón de semejanza. En esto pudo haberse basado Pitágoras para demostrar su teorema
Pitágoras también pudo haber demostrado el teorema basándose en la relación entre las superficies de figuras semejantes.
Los triángulos PQR y PST son semejantes, de manera que:
\frac {r}{u}=\frac {s}{v} = r
siendo r la razón de semejanza entre dichos triángulos. Si ahora buscamos la relación entre sus superficies:
S_{PQR}\ =\ \frac {1}{2} \left ( rs \right )
S_{PST}\ =\ \frac {1}{2} \left ( uv \right )
obtenemos después de simplificar que:
\frac {S_{PQR}}{S_{PST}}=\frac {rs}{uv} = \frac {r}{u} \cdot \frac {s}{v}
pero siendo \frac {r}{u}=\frac {s}{v} = r la razón de semejanza, está claro que:
\frac {S_{PQR}}{S_{PST}}= \left (\frac {r}{u} \right )^2 = \left ( \frac {s}{v} \right ) ^2
Es decir, "la relación entre las superficies de dos figuras semejantes es igual al cuadrado de la razón de semejanza".
Aplicando ese principio a los triángulos rectángulos semejantes ACH y BCH tenemos que:
\frac {S_{ACH}}{S_{BCH}}= \left (\frac {b}{a} \right )^2
que de acuerdo con las propiedades de las proporciones da:
\frac {S_{ACH}} {b^2} = \frac {S_{BCH}} {a^2} = \frac {S_{ACH} + S_{BCH}}{b^2+a^2 } (I)
y por la semejanza entre los triángulos ACH y ABC resulta que:
\frac {S_{ACH}}{S_{ABC}}= \left (\frac {b}{c} \right )^2
\frac {S_{ACH}}{b^2} = \frac {S_{ABC}} {c^2}
pero según (I) \frac {S_{ACH}} {b^2} = \frac {S_{ACH} + S_{BCH}}{b^2+a^2 }, así que:
 \frac {S_{ACH} + S_{BCH}}{b^2+a^2 } = \frac {S_{ABC}} {c^2}
y por lo tanto:
 b^2 \ +\ a^2 \ = \ c^2
quedando demostrado el teorema de Pitágoras.

Los cuadrados compuestos en el centro y a la derecha tienen áreas equivalentes. Quitándoles los triángulos el teorema de Pitágoras queda demostrado.
Es asimismo posible que Pitágoras hubiera obtenido una demostración gráfica del teorema.
Partiendo de la configuración inicial, con el triángulo rectángulo de lados abc, y los cuadrados correspondientes a catetos e hipotenusa –izquierda-, se construyen dos cuadrados diferentes:
  • Uno de ellos –centro- está formado por los cuadrados de los catetos, más cuatro triángulos rectángulos iguales al triángulo inicial.
  • El otro cuadrado –derecha- lo conforman los mismos cuatro triángulos, y el cuadrado de la hipotenusa.
Si a cada uno de estos cuadrados les quitamos los triángulos, evidentemente el área del cuadrado gris (c^2) equivale a la de los cuadrados amarillo y azul (b^2+a^2), habiéndose demostrado el teorema de Pitágoras.

SEMEJANZA DE TEOREMAS DE TRIANGULOS

SEMEJANZA DE TRIÁNGULOS

triángulo 
triángulo

Los lados a y a', b y b', c y c' se 
llaman lados homólogos.
Son ángulos homólogos:
letras
Dos triángulos son semejantes cuando 
tienen sus ángulos homólogos iguales y 
sus lados homólogos proporcionales.
      ángulos razones
La razón de la proporción entre los lados 
de los triángulos se llama razón de 
semejanza.
La razón de los perímetros de los 
triángulos semejantes es igual a su 
razón de semejanza.
razones
La razón de las áreas de los triángulos 
semejantes es igual al cuadrado de su 
razón de semejanza.
razones


ejercicios

1 Calcular la altura de un edificio que 
proyecta una sombra de 6.5 m a la misma 
hora que un poste de 4.5 m de altura da 
una sombra de 0.90 m.
dibujo

solución

2 Los catetos de un triángulo rectángulo 
que miden 24 m y 10 m. ¿Cuánto medirán 
los catetos de un triángulo semejante al 
primero cuya hipotenusa mide 52 m?
dibujo
solución
solución
solución